For a binomial expansion:
#(x+y)^n# we have:
#((n),(r))x^(n-r)y^r#
#sum_(r=0)^(n)((n),(r))x^(n-r)y^r#
Where:
#((n),(r))=color(white)(0)^n C_(r)=(n!)/(r!(n-r)!)#
Beginning with #r=0#
#((5),(0))1^5(x^2)^0+((5),(1))1^4(x^2)^1+((5),(2))1^3(x^2)^2+((5),(3))1^2(x^2)^3#
#->((5),(4))1^1(x^2)^4+((5),(5))1^0(x^2)^5#
Next calculate #((n),(r))# and simplify:
#1+5x^2+10x^4+10x^6+5x^8+x^10#
Short cut:
#color(white)(0)^nC_(r)=color(white)(0)^nC_(n-r)#
When one of the terms is #1#, it is unnecessary to write out the powers. This was just done for completeness.