How do you use the binomial series to expand #(2+1/4x)^9#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer A. S. Adikesavan Nov 17, 2016 #512( 1 + 9(x/8)+36(x/8)^2 + 84(x/6)^3 + 126(x/8)^4# #+ 126(x/6)^5 + 84(x/8)^6 + 36(x/8)^7 + + 9(x/8)^8 + (x/8)^9)# Explanation: The binomial series for #( a + b )^N, N= 2. 3. 4, ...# is #a^N+NC_1a^(N-1)b+NC_2a^(N-2)b^2+...+NC_(N-1)ab^(N-1)+b^N# where, #NC_r = 1/(r!)N(N-1)(N-2)...(N-r)-NC_(N-r)#. Using #9C_r=9C_(9-r)#, r = 1, 2, 3 and 4, #(2+1/4x)^9# #=2^9(1+x/8)^9# ( to make a = 1 ) #= 512( 1 + 9(x/8)+36(x/8)^2 + 84(x/8)^3 + 126(x/8)^4# #+ 126(x/8)^5 + 84(x/8)^6 + 36(x/8)^7 + + 9(x/8)^8 + (x/8)^9)# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 2097 views around the world You can reuse this answer Creative Commons License