How do you use the binomial series to expand # (2+kx)^8 #? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Narad T. Jan 21, 2017 See the answer below Explanation: The binomial theorem is #(a+b)^n=sum_(r=0)^n((n),(r))a^(n-r)b^r# #((n),(r))=(n!)/(r!(n-r)!)# Therefore, #(2+kx)^8=sum_(r=0)^8((8),(r))2^(8-r)(kx)^r# #=((8),(0))2^8+((8),(1))2^7(kx)+((8),(2))2^6(kx)^2+((8),(3))2^5(kx)^3+((8),(4))2^4(kx)^4+((8),(5))2^3(kx)^5+((8),(6))2^2(kx)^6+((8),(7))2(kx)^7+((8),(8))2^0(kx)^8# #=256+1024kx+1792k^2x^2+1762k^3x^3+1120k^4x^4+448k^5x^5+112k^6x^6+14k^7x^7+k^8x^8# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 2797 views around the world You can reuse this answer Creative Commons License