The binomial theorem is
#(a+b)^n=sum_(k=0)^n((n),(k))a^(n-k)b^k#
#=((n),(0))a^nb^0+((n),(1))a^(n-1)b+((n),(2))a^(n-2)b^2+.....#
#=a^n+((n)(n-1))/(1*2)a^2b+((n)(n-1)(n-2))/(1*2.3)a^3b^2+...#
Where,
#((n),(k))=(n!)/((n-k)!(k!))#
Also,
#(1+b)^n=1+((n)(n-1))/(1*2)b+((n)(n-1)(n-2))/(1*2.3)b^2+..#
Here, we have
#1/sqrt(4+x^2)=1/(2(1+(x/2)^2)^(1/2))#
Here
#n=-1/2#
#a=1#
#b=(x/2)^2#
Therefore,
#1/sqrt(4+x^2)=1/2(1+(x/2)^2)^(-1/2)#
#=1/2(((1/2),(0))1^(1/2)(x^2/2)^0+((1/2),(1))1^(1/2-1)(x^2/2)^2+((1/2),(2))1^(1/2-2)(x/2)^4+......)#
#=1/2(1+(-1/2)(x/2)^2+((-1/2)(-3/2))/(1*2)(x/2)^4+..)#
#=1/2-1/16x^2+3/256x^4+.....#