Binomial Expansion: #(a+b)^n=\sum_{k=0}^{n} C(n,k)a^{n-k}b^k#, where #C(n,k)# is the the binomial coefficient which is defined as:
#C(n,k) \equiv \frac{n!}{k!(n-k)!}#.
#(a-b)^n=\sum_{k=0}^{n}C(n,k)a^{n-k}(-1.b)^k#
#\qquad \qquad \qquad \quad =\sum_{k=0}^{n}(-1)^kC(n,k)a^kb^{n-k}#.
Solution: #a=x; \qquad b=\sqrt{2}; \qquad n=5#
#(x-\sqrt{2})^5 = (-1)^{0}C(5,0)x^5+(-1)^1C(5,1)x^4(\sqrt{2})^3 + #
#(-1)^2C(5,2)x^3(\sqrt{2})^2+(-1)^3C(5,3)x^2(\sqrt{2})^3+#
#(-1)^4C(5,4)x(\sqrt{2})^4+(-1)^5C(5,5)(\sqrt{2})^5#
Binomial Coefficients: #C(n,k)=C(n, n-k)#
#C(5,0)=C(5,5)=1; \qquad C(5,1)=C(5,4)=5;#
#C(5,2)=C(5,3)=10#
#(x-\sqrt{2})^5=x^5-5\sqrt{2}x^4+20x^3-20\sqrt{2}x^2+20x-4\sqrt{2}#