How do you use the Binomial Theorem to expand #(2x+1)^4#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Bio Jan 20, 2016 #(2x+1)^4 = 16x^4 + 32x^3 + 24x^2 + 8x + 1# Explanation: #(2x+1)^4 = frac{4!}{4!0!}(2x)^4(1)^0 + frac{4!}{3!1!}(2x)^3(1)^1 + frac{4!}{2!2!}(2x)^2(1)^2 + frac{4!}{1!3!}(2x)^1(1)^3 + frac{4!}{0!4!}(2x)^0(1)^4# #= 1(2x)^4 + 4(2x)^3 + 6(2x)^2 + 4(2x)^1 + 1(2x)^0# #= 16x^4 + 32x^3 + 24x^2 + 8x + 1# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 24347 views around the world You can reuse this answer Creative Commons License