How do you use the binomial theorem to expand and simplify the expression #(1-2x)^3#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Binayaka C. Mar 22, 2018 #(1-2x)^3 = 1-6x+12x^2-8x^3# Explanation: We know #(a+b)^n= nC_0 a^n*b^0 +nC_1 a^(n-1)*b^1 + nC_2 a^(n-2)*b^2+..........+nC_n a^(n-n)*b^n# Here #a=1,b=-2x ,n=3# We know, #nC_r = (n!)/(r!*(n-r)!# #:.3C_0 =1 , 3C_1 =3, 3C_2 =3,3C_3 =1 # #:.(1-2x)^3# # = 3C_0*1^3+3C_1*1^2*(-2x)+3C_2*1*(-2x)^2+3C_3*(-2x)^3# #:.(1-2x)^3 = 1-6x+12x^2-8x^3# [Ans] Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 3894 views around the world You can reuse this answer Creative Commons License