How do you use the Binomial Theorem to expand # (d+2e)^7#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer sankarankalyanam Oct 26, 2017 #(d+ 2e)^7 = d^7 + _7C_1 d^6 (2e) + _7C_2 d^5 (2e)^2) + _7C_3 d^4 (2e)^3 + _7C_4 d^3 (2e)^4 + _7C_5 d^2 (2e)^5 + _7C_6 d (2e)^6 + (2e)^7# Explanation: #(d+ 2e)^7 = d^7 + _7C_1 d^6 (2e) + _7C_2 d^5 (2e)^2) + _7C_3 d^4 (2e)^3 + _7C_4 d^3 (2e)^4 + _7C_5 d^2 (2e)^5 + _7C_6 d (2e)^6 + (2e)^7# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 1524 views around the world You can reuse this answer Creative Commons License