How do you use the binomial #(x+2y)^5# using Pascal's triangle? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer sankarankalyanam Jan 28, 2018 #= color(blue)(x^5 + 10x^4y + 40 x^3 y^2 + 80 x^2 y^3 + 80 xy^4 + 32y^5# Explanation: 1 5 10 10 5 1 pattern #a = x, b = 2y# #(x + 2y)^5 = 1 * x^5 (2y)^0 + 5 x^4 (2y) + 10 x^3 (2y)^2 + 10 x^2 (2y)^3 + 5 x (2y)^4 + 1 x^0 (2y)^5# #= color(blue)(x^5 + 10x^4y + 40 x^3 y^2 + 80 x^2 y^3 + 80 xy^4 + 32y^5# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 10952 views around the world You can reuse this answer Creative Commons License