How do you use the limit definition to find the slope of the tangent line to the graph #f(t) = t − 13 t^2# at t=3?

1 Answer
Feb 23, 2017

# f'(3)=-77#

Explanation:

The slope of the tangent at any point is given by the derivative of the function at that point. The definition of the derivative of #y=f(x)# is

# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #

So with # f(t) = t-13t^2 # and the value of #f'(3)# sought then;

# f'(3)=lim_(h rarr 0) (f(3+h)-f(3))/h#
# \ \ \ \ \ \ \ \ \=lim_(h rarr 0) ({(3+h)-13(3+h)^2}-{3-13*3^2})/h#

# \ \ \ \ \ \ \ \ \=lim_(h rarr 0) ({3+h-13(9+6h+h^2)}-{3-13*9})/h#

# \ \ \ \ \ \ \ \ \=lim_(h rarr 0) ({3+h-117-78h-13h^2}-{3-117})/h#

# \ \ \ \ \ \ \ \ \=lim_(h rarr 0) {3+h-117-78h-13h^2-3+117)/h#

# \ \ \ \ \ \ \ \ \=lim_(h rarr 0) {h-78h-13h^2)/h#

# \ \ \ \ \ \ \ \ \=lim_(h rarr 0) (-77-13h)#

# \ \ \ \ \ \ \ \ \=-77#