How do you use the limit definition to find the slope of the tangent line to the graph #f(x)= 1/(x+2)# at (0,1/2)?

1 Answer
Oct 28, 2016

"How do you" is given in the explanation.

Explanation:

Given:

#f(x) = 1/(x + 2)#

The limit definition is

#lim_(hto0){f(x + h) - f(x)}/h#

To create #f(x + h)#, you merely substitute #x + h# for every #x#:

#f(x + h) = 1/(x + h + 2)#

Substitute these functions into the definition:

#lim_(hto0){1/(x + h + 2) - 1/(x + 2)}/h#

Multiply by 1 in the form of #{(x + h + 2)(x + 2)}/{(x + h + 2)(x + 2)}#:

#lim_(hto0){1/(x + h + 2) - 1/(x + 2)}/h{(x + h + 2)(x + 2)}/{(x + h + 2)(x + 2)}#

Multiply the numerators on the top and the #h# on the bottom:

#lim_(hto0){((x + h + 2)(x + 2))/(x + h + 2) - ((x + h + 2)(x + 2))/(x + 2)}/(h(x + h + 2)(x + 2))#

What this does is that makes the first term in the numerator become #(x + 2)# by cancelling the denominator, #(x + h + 2)#, and it makes the second term in the numerator become #x + h + 2# by canceling the denominator, #x + 2#.

#lim_(hto0){(cancel(x + h + 2)(x + 2))/cancel(x + h + 2) - ((x + h + 2)cancel(x + 2))/cancel(x + 2)}/(h(x + h + 2)(x + 2))#

Remove the canceled factors:

#lim_(hto0){(x + 2) - (x + h + 2)}/(h(x + h + 2)(x + 2))#

Distribute the minus sign in the numerator through the parenthesis:

#lim_(hto0){x + 2 -x - h - 2}/(h(x + h + 2)(x + 2))#

More canceling:

#lim_(hto0){cancel(x) cancel(+ 2) cancel(-x) - h cancel(- 2)}/(h(x + h + 2)(x + 2))#

Remove the cancelled terms:

#lim_(hto0){ - h}/(h(x + h + 2)(x + 2))#

#-h/h# becomes -1:

#lim_(hto0){ -1}/((x + h + 2)(x + 2))#

Now, it is ok to let the limit go to zero:

#{ -1}/((x + 0 + 2)(x + 2))#

Remove the 0:

#{ -1}/((x + 2)(x + 2))#

The numerator becomes a square:

#{ -1}/((x + 2)^2)#

Substitute the x coordinate for the point #(0, 1/2)# to obtain the slope, m, of the tangent line:

#m = { -1}/((0 + 2)^2)#

#m = -1/4#