How do you use the rational root theorem to find the roots of #f(x) = 9x^8+9x^6-12x+7#?
1 Answer
Use the Durand-Kerner method to find approximations:
#x = 0.676693+-0.0518119i#
#x = 0.456213+-0.953409i#
#x = -0.902683+-0.483723i#
#x = -0.230223+-1.17823i#
Explanation:
By the rational root theorem, any rational zeros of
So the only possible rational zeros are:
#+-1/9# ,#+-1/3# ,#+-7/9# ,#+-1# ,#+-7/3# ,#+-7#
None of these are zeros of
We can find approximations to the zeros using the Durand-Kerner method.
Suppose the zeros are
Choose initial approximations:
#p_0 = (0.4+0.9i)^0#
#q_0 = (0.4+0.9i)^1#
#r_0 = (0.4+0.9i)^2#
#vdots#
#w_0 = (0.4+0.9i)^7#
Iterate using the formulas:
#p_(k+1) = p_k - f(p_k)/(9(p_k - q_k)(p_k - r_k)...(p_k-w_k))#
#q_(k+1) = q_k - f(q_k)/(9(q_k - p_(k+1))(q_k - r_k)...(q_k-w_k))#
#r_(k+1) = r_k - f(r_k)/(9(r_k - p_(k+1))(r_k - q_(k+1))...(r_k-w_k))#
#vdots#
#w_(k+1) = w_k - f(w_k)/(9(w_k - p_(k+1))(w_k - q_(k+1))...(w_k-v_(k+1)))#
Note the factor
It only takes about
#x = 0.676693+-0.0518119i#
#x = 0.456213+-0.953409i#
#x = -0.902683+-0.483723i#
#x = -0.230223+-1.17823i#