The remainder theorem states that when a polynomial #f(x)# is divided by #x-c#
#f(x)=(x-c)q(x)+r(x)#
#f(c)=0+r#
Here,
#f(x)=x^5+2x^4-3x+3#
and #(x-1)#
#f(1)=1+2-3+3=3#
The remainder is #=3#
We now perform the synthetic division
#color(white)(aaaa)##1##color(white)(aaaa)##|##color(white)(aaaa)##1##color(white)(aaaa)##2##color(white)(aaaa)##0##color(white)(aaaa)##0##color(white)(aaaa)##-3##color(white)(aaaa)##3#
#color(white)(aaaa)####color(white)(aaaaa)##|##color(white)(aaaaa)####color(white)(aaaa)##1##color(white)(aaaa)##3##color(white)(aaaa)##3##color(white)(aaaa)##3##color(white)(aaaaa)##0#
#color(white)(aaaaaaaaaa)#--------------------------------------------------------------
#color(white)(aaaa)####color(white)(aaaaa)####color(white)(aaaaaa)##1##color(white)(aaaa)##3##color(white)(aaaa)##3##color(white)(aaaa)##3##color(white)(aaaa)##0##color(white)(aaaaa)##color(red)(3)#
The remainder is also #=3#
The quotient is #=x^4+3x^3+3x^2+3x#