The remainder theorem states that when a polynomial #f(x)# is divided by #x-c#
#f(x)=(x-c)q(x)+r(x)#
#f(c)=0+r#
Here,
#f(x)=2x^3-7x^2#
and #(x-5)#
#f(5)=2*125-175=250-175=75#
The remainder is #=75#
We now perform the synthetic division
#color(white)(aaaa)##5##color(white)(aaaa)##|##color(white)(aaaa)##2##color(white)(aaaa)##-7##color(white)(aaaa)##0##color(white)(aaaa)##0#
#color(white)(aaaa)##color(white)(aaaaa)##|##color(white)(aaaaa)##color(white)(aaaa)##10##color(white)(aaaa)##15##color(white)(aaaa)##75#
#color(white)(aaaaaaaaaa)#------------------------------------------------------------
#color(white)(aaaa)##color(white)(aaaaa)##color(white)(aaaaaa)##2##color(white)(aaaa)##3##color(white)(aaaa)##15##color(white)(aaaa)##color(red)(75)#
The remainder is also #=75#
The quotient is #=2x^2+3x+15#