How do you use the remainder theorem to evaluate #f(a)=a^3+3a^2+2a+8# at a=-3?

1 Answer
Dec 3, 2016

#f(-3)=2#

Explanation:

#f(a)=a^3+3a^2+2a+8# at #a=-3#

Use synthetic division.

#ul(-3)|1 color(white)(aaaaa)3color(white)(aaa)2color(white)(aaaa)8#
#color(white)(aaaa)ul{darrcolor(white)(aa)-3color(white)(aaa)0color(white)(a)-6#
#color(white)(a^2aaa)1color(white)(aaaaa)0color(white)(aaa)2color(white)(aa^2a)color(red)2#

The last number #color(red)2# is the remainder and is also the
value of #f(-3).#

#f(-3)=color(red)2#

You can check your solution by substituting #x=-3#.

#f(-3)=(-3)^3+3(-3)^2+2(-3)+8=2#