How do you use the second fundamental theorem of Calculus to find the derivative of given #int (2t-1)^3 dt# from #[x^2, x^7]#?
1 Answer
Feb 23, 2016
The derivative is
Explanation:
Suppose
Define the function
#F(x) = int_(p(x))^(q(x)) f(t) "d"t#
Combining the Second Fundamental Theorem of Calculus and the Chain Rule implies that
#F'(x) = f(q(x))*q'(x) - f(p(x))*p'(x)#
So, in this case we have
#f(t) = (2t-1)^3#
#p(x) = x^2#
#q(x) = x^7#
Plug it in to get
#frac{"d"}{"d"x}(int_(x^2)^(x^7) (2t-1)^3 "d"t)#
# = (2(x^7)-1)^3 frac{"d"}{"d"x}(x^7) - (2(x^2)-1)^3 frac{"d"}{"d"x}(x^2)#
# = (2x^7-1)^3 (7x^6) - (2x^2-1)^3 (2x)#