Verifying the equality of the given trigonometric expressions is determined by evaluating each side separately then comparing their results.
These trigonometric identities are used
#color(red)(sin(-x)=-sinx)#
#color(red)(tanx=sinx/cosx)#
#color(red)(cos^2+sin^2x=1)#
#sin^2(-x)=(sin(-x))^2=(color(red)(-sinx))^2=sin^2x#
#color(blue)(sin^2(-x)=sin^2x" " EQ1)#
#(tan^2x)/(tan^2x+1)#
#=((color(red)(sinx/cosx))^2)/((color(red)(sinx/cosx))^2+1)#
#=(sin^2x/cos^2x)/(sin^2x/cos^2x+1)#
#=(sin^2x/cos^2x)/(color(red)(sin^2x+cos^2x)/cos^2x)#
#=(sin^2x/cos^2x)/(1/cos^2x)#
#=sin^2x/cos^2x*cos^2x/1#
#=sin^2x#
#color(blue)((tan^2x)/(tan^2x+1)=sin^2x)#
#color(blue)(sin^2(-x)=sin^2x " "EQ1)#
Therefore,
#(tan^2x)/(tan^2x+1)=sin^2(-x)#