# How do you write #0.000439# in scientific notation?

##### 1 Answer

#### Explanation:

Scientific notation basically just uses exponents with base 10 to make representing either super large or infinitesimally small numbers a lot easier. It can get confusing, but here's the key:

Any number in scientific notation will have something times 10 to some power (let's say *just move #m# decimal places up or down* (based on the sign).

For example, *up* 34 decimal places (to 36000000000), and conversely, *back* 34 decimal places (to 0.00000000034). You also now see why scientific notation is useful in practice -- you'll often get ridiculously large or small numbers like that, and it would be a pain to write all those zeroes over and over again!

This also works when you want to convert a number into scientific notation: we move up or down until we have **one whole number** followed by how many ever decimal places deemed appropriate.

Consider your example:

Note that based on the number of significant digits you need, you can round that up to

If you need additional help, this fantastic video by Tyler DeWitt should clear things up for you.

Hope that helps :)