How do you write #(6 times 10^6) ÷ (8 times 10^3)# in standard form?

1 Answer
May 21, 2018

#7.5xx10^2#

Explanation:

If dividing a greater value into a lesser value is giving you a problem do this:

#6xx10^6" is the same as "60xx10^5#

So we have #(60xx10^5)-:(8xx10^3)#

#60/8xx10^5/10^3#

#60/8xx10^(5-3)#

#60/8xx10^2#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
By calculator we have: #7.5xx10^2#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I sort of cheat for the division #60/8#

#5xx8=40# but to give us 60 we need 20 more.

Note that #1/2# of #40=20#

#color(white)("dddd")5xx8=40color(white)("dddd") -> color(white)("dddd")5xx8=40#
#1/2xx5xx8=1/2xx40->color(white)("ddd")2 1/2xx8=20#

So #ubrace((2 1/2+5))xx8=40+20=60#

#color(white)("dddddd")7.5 color(white)("d")xx8=60#