How do you write an equation for a line given #m=-7# and #f(2)=-1#? Algebra Forms of Linear Equations Write a Function in Slope-Intercept Form 1 Answer vimuth · Stefan V. Mar 20, 2018 #y=-7x+13# Explanation: #f(2)=-1# is basically the coordinate #(2,-1)#. The gradient #(m)# is given, so #y=-7x +c# Substituting #(2,-1)# #-1=-14+c# #c=13# Therefore #y=-7x+13# Answer link Related questions How do you determine the #(x,y)# point given #f(x)=y#? How do you evaluate functions? How do you write an equation for a line with m=3.5 and #f(-2)=1#? What are the two points if you are given #f(-1)=2# and #f(0)=-6#? How do you write an equation for a line given #f(-1)=1# and #f(1)=-1#? How do you determine the slope given #f(-4)=2# and #f(0)=3#? How do you write an equation of the line with slope -3 and y-intercept (0,-5)? How do you find the slope-intercept form of the equation of the line that passes through (-2,... How do you write the slope intercept form of the equation of the line through the given point... Given the equation y - 3 =1/2 (x=6) in point-slope form, how do you identify the equation of the... See all questions in Write a Function in Slope-Intercept Form Impact of this question 3296 views around the world You can reuse this answer Creative Commons License