How do you write the partial fraction decomposition of the rational expression # 1/(x^2+x+1) #?
1 Answer
There is no breakdown into simpler fractions with Real coefficients, but with Complex coefficients we find:
#1/(x^2+x+1)= (sqrt(3)i)/(3(x+1/2-sqrt(3)/2i))-(sqrt(3)i)/(3(x+1/2+sqrt(3)/2i))#
Explanation:
Note that
The zeros of
#1/(x^2+x+1)#
#= A/(x-omega^2) + B/(x-omega)#
#=(A(x-omega)+B(x-omega^2))/(x^2+x+1)#
#=((A+B)x - (Aomega+Bomega^2))/(x^2+x+1)#
Equating coefficients:
#{ (A+B=0), (Aomega+Bomega^2 = -1) :}#
Substituting
#Aomega-Aomega^2=-1#
Rearranging, we find:
#A = 1/(omega^2-omega) = 1/(-sqrt(3)i) = sqrt(3)/3i#
So:
#1/(x^2+x+1)#
#= (sqrt(3)i)/(3(x-omega^2))-(sqrt(3)i)/(3(x-omega))#
#= (sqrt(3)i)/(3(x+1/2-sqrt(3)/2i))-(sqrt(3)i)/(3(x+1/2+sqrt(3)/2i))#