How do you write the partial fraction decomposition of the rational expression #1/(x^4-1)#?
1 Answer
#1/(x^4-1) = 1/(4(x-1))-1/(4(x+1))-1/(2(x^2+1))#
#= 1/(4(x-1))-1/(4(x+1))+i/(4(x-i))-i/(4(x+i))#
Explanation:
Sticking with Real coefficients for now:
#x^4 - 1 = (x-1)(x+1)(x^2+1)#
So we want to solve:
#1/(x^4-1) = A/(x-1)+B/(x+1)+(Cx+D)/(x^2+1)#
#=(A(x+1)+B(x-1))/(x^2-1)+(Cx+D)/(x^2+1)#
#=((A(x+1)+B(x-1))(x^2+1)+(Cx+D)(x^2-1))/(x^4-1)#
#=((A+B+C)x^3+(A-B+D)x^2+(A+B-C)x+(A-B-D))/(x^4-1)#
So:
(i)
#A+B+C=0# (ii)
#A-B+D=0# (iii)
#A+B-C=0# (iv)
#A-B-D=1#
If we subtract (iii) from (i) we find
(v)
#A+B=0#
If we subtract (iv) from (ii) we find
(vi)
#A-B=1/2#
Adding (v) and (vi) we find
So:
#1/(x^4-1) = 1/(4(x-1))-1/(4(x+1))-1/(2(x^2+1))#
If we allow Complex coefficients then we find:
#-1/(2(x^2+1)) = i/(4(x-i))-i/(4(x+i))#
So:
#1/(x^4-1) = 1/(4(x-1))-1/(4(x+1))+i/(4(x-i))-i/(4(x+i))#