How do you write the partial fraction decomposition of the rational expression # 1 / ((x^2 + 1) (x^2 +4))#?
1 Answer
Dec 16, 2015
Solve to find:
#1/((x^2+1)(x^2+4)) = 1/(3(x^2+1)) - 1/(3(x^2+4))#
Explanation:
Neither of the quadratics
#1/((x^2+1)(x^2+4)) = A/(x^2+1) + B/(x^2+4)#
#=(A(x^2+4)+B(x^2+1))/((x^2+1)(x^2+4))#
#=((A+B)x^2+(4A+B))/((x^2+1)(x^2+4))#
Equating coefficients we find:
#A+B = 0#
#4A+B = 1#
Hence
So:
#1/((x^2+1)(x^2+4)) = 1/(3(x^2+1)) - 1/(3(x^2+4))#
If we allow Complex coefficients, then we find:
#1/(x^2+1) = i/(2(x+i))-i/(2(x-i))#
#1/(x^2+4) = i/(4(x+2i))-i/(4(x-2i))#
Hence:
#1/(3(x^2+1)) - 1/(3(x^2+4))#
#=i/(6(x+i))-i/(6(x-i)) + i/(12(x-2i))-i/(12(x+2i))#