How do you write the partial fraction decomposition of the rational expression #(2x-6)/((x-1)(x-2)^2)#?

1 Answer
Apr 9, 2018

#color(blue)(4/(x-2)-2/((x-2)^2)-4/(x-1))#

Explanation:

#(2x-6)/((x-1)(x-2)^2)#

We expect the form of the partial fractions to be:

#(2x-6)/((x-1)(x-2)^2)-=A/(x-1)+B/((x-2)^2)+C/(x-2)#

Adding #RHS#

#2x-6-=A(x-2)^2+B(x-1)+C(x-1)(x-2)#

Because this is an identity numerators will be equal:

We are looking to find the values of A B and C.

We now set #x# to values that will eliminate most of the unknowns we are looking for.

#2x-6-=A(x-2)^2+B(x-1)+C(x-1)(x-2)#

Setting #x=2#

#2(2)-6-=A((2)-2)^2+B((2)-1)+C((2)-1)((2)-2)#

#-2-=B#

#B=-2#

Setting #x=1#

#2(1)-6-=A((1)-2)^2+B((1)-1)+C((1)-1)((1)-2)#

#-4-=A#

#A=-4#

Setting #x=0#

#2(0)-6-=A((0)-2)^2+B((0)-1)+C((0)-1)((0)-2)#

#-6-=4A-B+2C#

#4A-B+2C=-6#

We already know A and B:

#4(-4)-(-2)+2C=-6#

#C=4#

So our partial fractions are:

#color(blue)(4/(x-2)-2/((x-2)^2)-4/(x-1))#