How do you write the partial fraction decomposition of the rational expression # (2x^3-x^2+x+5)/(x^2+3x+2)#?
1 Answer
Aug 7, 2016
Explanation:
#(2x^3-x^2+x+5)/(x^2+3x+2)#
#=(color(blue)(2x^3+6x^2+4x)color(green)(-7x^2-21x-14)+18x+19)/(x^2+3x+2)#
#=(color(blue)(2x(x^2+3x+2))color(green)(-7(x^2+3x+2))+18x+19)/(x^2+3x+2)#
#=2x-7+(18x+19)/(x^2+3x+2)#
Focusing on the remaining rational expression:
#(18x+19)/(x^2+3x+2)#
#=(18x+19)/((x+1)(x+2))#
#=A/(x+1)+B/(x+2)#
Using Heaviside's cover-up method we find:
#A=(18(-1)+19)/((-1)+2) = 1/1 = 1#
#B=(18(-2)+19)/((-2)+1) = (-17)/(-1) = 17#
So:
#(18x+19)/(x^2+3x+2)=1/(x+1)+17/(x+2)#
Putting it all together:
#(2x^3-x^2+x+5)/(x^2+3x+2) = 2x-7+1/(x+1)+17/(x+2)#