How do you write the partial fraction decomposition of the rational expression #(-3x^2 +3x - 5) / (3x^3 +x^2 + 6x +2)#?
1 Answer
Explanation:
Given:
#(-3x^2+3x-5)/(3x^3+x^2+6x+2)#
Note that the denominator factors as:
#3x^3+x^2+6x+2 = (3x+1)(x^2+2)#
The quadratic factor
#(-3x^2+3x-5)/(3x^3+x^2+6x+2) = A/(3x+1)+(Bx+C)/(x^2+2)#
#color(white)((-3x^2+3x-5)/(3x^3+x^2+6x+2)) = (A(x^2+2)+(Bx+C)(3x+1))/(3x^3+x^2+6x+2)#
#color(white)((-3x^2+3x-5)/(3x^3+x^2+6x+2)) = ((A+3B)x^2+(B+3C)x+(2A+C))/(3x^3+x^2+6x+2)#
Equating coefficients, this gives us a system of equations:
#{ (A+3B=-3), (B+3C=3), (2A+C=-5) :}#
Subtracting
#-6A+B=18#
Subtracting
#19A = -57#
Dividing both sides by
#A = -3#
Putting this value of
#-3+3B=-3#
Hence:
#B = 0#
Putting this value of
#0+3C = 3#
Hance:
#C = 1#
So:
#(-3x^2+3x-5)/(3x^3+x^2+6x+2) = -3/(3x+1)+1/(x^2+2)#