How do you write the partial fraction decomposition of the rational expression # (8x^2 - 4x - 8)/(x^4 + 2x^3)#?

1 Answer
Feb 2, 2018

#(8x^2 - 4x - 8)/(x^3(x+ 2))=-4/(x+2)+4/x-4/x^3#

Explanation:

We have: #(8x^2 - 4x - 8)/(x^4 + 2x^3)=(8x^2 - 4x - 8)/(x^3(x+ 2))#

#(8x^2 - 4x - 8)/(x^3(x+ 2))=A/(x+2)+B/x+C/x^2+D/x^3#

#color(white)((8x^2 - 4x - 8)/(x^3(x+ 2)))=(Ax+B(x+2))/(x(x+2))+C/x^2+D/x^3#

#color(white)((8x^2 - 4x - 8)/(x^3(x+ 2)))=(Ax^2+Bx(x+2)+C(x+2))/(x^2(x+2))+D/x^3#

#color(white)((8x^2 - 4x - 8)/(x^3(x+ 2)))=(Ax^3+Bx^2(x+2)+Cx(x+2)+D(x+2))/(x^3(x+2))#

#8x^2 - 4x - 8=Ax^3+Bx^2(x+2)+Cx(x+2)+D(x+2)#

Putting in #x=0# gives us:
#-8=D(2)#
#D=-4#

#8x^2 - 4x - 8=Ax^3+Bx^2(x+2)+Cx(x+2)-4(x+2)#

Now putting in #x=-2# gives us:
#8(-2)^2 - 4(-2) - 8=A(-2)^3+B(-2)^2(-2+2)+C(-2)(-2+2)-4(-2+2)#
#32=-8A#
#A=-4#

#8x^2 - 4x - 8=-4x^3+Bx^2(x+2)+Cx(x+2)-4(x+2)#

There are no numbers that can give us just #B# or #C#, so we must find one in terms of the other, and so we shall put in #x=1# to get:
#-4=-4+3B+3C-12#
#12=3(B+C)#
#B=4-C# (we'll shall put this back in the original equation to help find #C#.

#8x^2 - 4x - 8=-4x^3+(4-C)x^2(x+2)+Cx(x+2)-4(x+2)#

We need to put in a random value, i.e. #x=2#

#8(2)^2 - 4(2)- 8=-4(2)^3+(4-C)(2)^2((2)+2)+C(2)((2)+2)-4((2)+2)#

#16=8c+16(4-C)-48#

#64=16(4-C)#

#4=4-C#

#C=0#

Remember that #B=4-C#

#B=4-0=4#

#(8x^2 - 4x - 8)/(x^3(x+ 2))=-4/(x+2)+4/x+0/x^2-4/x^3#

#color(white)((8x^2 - 4x - 8)/(x^3(x+ 2)))=-4/(x+2)+4/x-4/x^3#