How do you write the partial fraction decomposition of the rational expression #(x-2) /( x^2+4x+3)#?

1 Answer
Jan 14, 2016

#(x-2)/((x+1)(x+3)) = 4/(x+2)-3/(x+1) #

Explanation:

#(x-2)/(x^2+4x+3)#

#color(red) "Factorize the Denominator"#
#x^2+4x+3 = (x+1)(x+3)#

Our expression becomes

#(x-2)/((x+1)(x+3))#

This expression can be written as

#(x-2)/((x+1)(x+3)) = A/(x+1) + B/(x+2)#
#(x-2)/((x+1)(x+3)) =(A(x+2)+B(x+1))/((x+1)(x+2))#

Equating the Numerators
#x-2 = A(x+2)+B(x+1)#

Now we have to solve for #A# and #B#

Let us take #x=-1# for making #x+1 =0# and thus removing #B#.

#-1-2 = A(-1+2)+B(-1+1)#
#-3=A #
#A=-3#

Now let us use #x=-2#

#-2-2=A(-2+2)+B(-2+1)#
#-4=-B#

#B=4#

Substituting the value of #A# and #B# in

#(x-2)/((x+1)(x+3)) = A/(x+1) + B/(x+2)#

Our final answer is

#(x-2)/((x+1)(x+3)) = -3/(x+1) + 4/(x+2)#

Rewriting

#(x-2)/((x+1)(x+3)) = 4/(x+2)-3/(x+1) #