How do you write the standard from of the equation of the circle given center is at (-1,2) and the point (3,4) lies on the circle?
1 Answer
Mar 9, 2018
Explanation:
#"the standard form of the equation of a circle is"#
#•color(white)(x)(x-a)^2+(y-b)^2=r^2#
#"where "(a,b)" are the coordinates of the centre and r"#
#"the radius"#
#"here "(a,b)=(-1,2)#
#"the radius is the distance from the centre to a point"#
#"on the circumference"#
#"to calculate r use the "color(blue)"distance formula"#
#•color(white)(x)r=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(-1,2)" and "(x_2,y_2)=(3,4)#
#rArrr=sqrt((3+1)^2+(4-2)^2)=sqrt(16+4)=sqrt20#
#rArr(x-(-1))^2+(y-2)^2=(sqrt20)^2#
#rArr(x+1)^2+(y-2)^2=20larrcolor(red)"equation of circle"#