How do you write y=2(x-1)^2-3 in standard form?

2 Answers
Feb 20, 2018

#2x^2-4x-1#

Explanation:

#"the equation of a parabola in standard form is"#

#•color(white)(x)y=ax^2+bx+c color(white)(x);a!=0#

#"expand "(x-1)^2" and collect like terms"#

#y=2(x^2-2x+1)-3#

#color(white)(y)=2x^2-4x+2-3#

#color(white)(y)=2x^2-4x-1larrcolor(blue)"in standard form"#

Feb 20, 2018

Standard form:
#y=2x^2-4x-1#

Explanation:

#y=2(x-1)^2-3#

We can start by expanding #(x-1)^2#

#(x-1)(x-1)#

=

#x^2-2x+1#

Now we have:

#y=2(x^2-2x+1)-3#

To get the x^2-2x+1 out of the parentheses we multiply the expression by 2 then subtract by 3:

#y=2(x^2-2x+1)-3#

=

#y=(2x^2-4x+2)-3#

=

#y=2x^2-4x-1#

This is in standard form:

#y=2x^2-4x-1#