How do you write #y= x^2-18x+52 into vertex form?

1 Answer

Answer:

#(x-9)^2=y+29#

Explanation:

Given equation: #y=x^2-18x+52#

#y=x^2-2(9)x+9^2-9^2+52#

#y=(x-9)^2-81+52#

#y=(x-9)^2-29#

#(x-9)^2=(y+29)#

The above parabola has the vertex at

#(x-9=0, y+29=0)#

#(x=9, y=-29)#

#(9, -29)#