How does conservation of momentum explain how Newton's cradle works?

1 Answer
Mar 3, 2018

You lift any number of balls and let go. The moving ball(s) then collide(s) with the stationary ball(s) and causes an equal number of balls to move on the other side.

This demonstrates conservation of momentum, because the number of balls moving before the collision is equal to the number of balls moving after the collision.

Momentum is defined as: #\vecp = m\vecv#

Each ball has the same mass, so this equivalent to saying the mass of moving balls remains constant from collision to collision. That takes care of one term. What about velocity? Well, the velocity of the moving balls right before the collision and the velocity of the moving balls on the other side right after the collision are equal. This can be seen, because the moving balls after the collision will never surpass the starting height of the balls on pre-collision side.

So if mass and velocity are unchanging for the system right before and right after collision, then the momentum will necessarily be constant: hence, conserved.