# How many millliters of 2.75 M H_2SO_4(aq) are needed to react completely with 47.5 g of BaO_2(s)?

Jul 7, 2016

$102 \setminus m L$

#### Explanation:

Write a balanced chemical equation for the reaction between barium peroxide and sulfuric acid.

$B a {O}_{2} + {H}_{2} S {O}_{4} \to B a S {O}_{4} + {H}_{2} {O}_{2}$

Use the stoichiometry of the equation to find the number of moles of sulfuric acid reacted.

$47.5 \setminus g \setminus B a {O}_{2} \times \frac{1 m o l . B a {O}_{2}}{169.33 \setminus g \setminus B a {O}_{2}} \times \frac{1 \setminus m o l . {H}_{2} S {O}_{4}}{1 \setminus m o l . \setminus B a {O}_{2}}$

$47.5 \cancel{\setminus g \setminus B a {O}_{2}} \times \frac{1 \textcolor{red}{\cancel{\setminus m o l . B a {O}_{2}}}}{169.33 \cancel{\setminus g \setminus B a {O}_{2}}} \times \frac{1 \setminus m o l . {H}_{2} S {O}_{4}}{1 \textcolor{red}{\cancel{\setminus m o l . \setminus B a {O}_{2}}}}$

$0.281 \setminus m o l . \setminus {H}_{2} S {O}_{4}$

Now, use the molarity formula to find the volume of the sulfuric acid used.

${C}_{M} = \frac{n}{V}$

Where:

${C}_{M} \text{ }$ is the molarity of the acid solution expressed in mol/L.

$V \text{ }$ is the volume of the acid solution expressed L.

$n \text{ }$ is the number of moles.

$V = \frac{n}{C} _ M$

$V = \frac{0.281 \setminus m o l .}{2.75 \setminus m o l . {L}^{-} 1}$

$V = 0.102 \setminus L$

$V = 102 \setminus m L$