How many solutions does #sin^2(2x)=1# have for #0≤(x)≤(3π)#?

(Without using a graphing calculator)

1 Answer
Mar 12, 2018

The equation has #6# solutions on the given interval:

#pi/4,(3pi)/4,(5pi)/4,(7pi)/4,(9pi)/4,# and #(11pi)/4#.

Explanation:

#sin^2(2x)=1#

#sqrt(sin^2(2x))=+-sqrt1#

#sin(2x)=+-1#

Here's a unit circle to remind us of some #sin# values:

enter image source here

#2x=pi/2,(3pi)/2,(5pi)/2,(7pi)/2,(9pi)/2, (11pi)/2...#

#x=(pi/2)/2,((3pi)/2)/2,((5pi)/2)/2,((7pi)/2)/2,((9pi)/2)/2,((11pi)/2)/2...#

#x=pi/4,(3pi)/4,(5pi)/4,(7pi)/4,(9pi)/4, (11pi)/4...#

These are the only solutions in the given range #[0,3pi)#. There are six solutions, so that is the answer.