How to answer this question? (photo for full question)

enter image source here

1 Answer
Jul 11, 2018

#theta=40'36"#

Explanation:

Point of intersection of the 2 curves

#x^2=16y#
#y=x^2/16#

Sub #y=x^2/16# into #xy=4#

#xtimesx^2/16=4#

#x^3/16=4#

#x^3=64#

#x=4#

Sub #x=4# into #y=x^2/16#

#y=4^2/16#

#y=1#

Therefore, #(4,1)# is the point of intersection.

The angle between 2 points can be found using the formula

#tan theta=abs((m_1-m_2)/(1+m_1m_2))#
where #m_1# and #m_2# are the gradients of the lines

To find the gradients of the line when #x=4#, we need to find the first derivative of both lines and sub #x=4# into each

#xy=4#
#y=4/x#
#(dy)/(dx)=-4/x^2#
#(dy)/(dx)=-4/(4^2)#
#m_1=(dy)/(dx)=-1/4#

#x^2=16y#
#y=x^2/16#
#(dy)/(dx)=x/8#
#(dy)/(dx)=4/8#
#m_2=(dy)/(dx)=1/2#

#tantheta=abs((-1/4-1/2)/(1+(-1/4times1/2)))#

#tantheta=abs((-3/4)/(7/8))#

#tantheta=abs(-6/7)#

#tantheta=6/7#

#theta=tan^(-1) (6/7)#

#theta=40'36"#