How to bring to the canonical form Jordan matrix:#A=[(-1,1,1),(-3,2,2),(-1,1,1)]#?

1 Answer
Nov 11, 2017

See below.

Explanation:

Taking the matrix #A# characteristic polynomial and then finding it's roots

#det(A-lambda I) = -lambda(lambda-1)^2# and then with #lambda_1= 0,lambda_2=lambda_3=1# we form

#J = ((lambda_1, 0, 0),(0, lambda_2, 1),(0, 0, lambda_2))# or

#J = ((0, 0, 0),(0, 1, 1),(0, 0, 1))#

Note the submatrix due to #lambda_2=lambda_3#

#s_2 = ((lambda_2,1),(0,lambda_2))#