How to calculate #6(sqrt5)^5 (2) =300(sqrt 5)?#

1 Answer
May 11, 2018

See the answer and proofing in the explanation below:

#(5^(5/2))/5^(1/2) = 25#
#5^(4/2)=25#
#5^2=25#
#25=25#

Explanation:

We can use exponential law to simplify this equation.

#sqrt(a) = a^(1/2)#
#(sqrt(a))^2 = a^(1/2xx2)# = #a^1 = a#

#6(sqrt(5))^2(2) = 300(sqrt(5))#

#6xx2xxsqrt(5)^5 = 300sqrt(5)#

#12xxsqrt(5)^5 = 300sqrt(5)#

#(sqrt(5)^5)/sqrt(5) = 300/12#

#(sqrt(5)xxsqrt(5)xxsqrt(5)xxsqrt(5)xxsqrt(5))/sqrt(5) = 25#

#(sqrt(5)xxsqrt(5)xxsqrt(5)xxsqrt(5)xxcancelsqrt(5))/cancelsqrt(5) = 25#

We know that #sqrt(a) xx sqrt(a) = a#

#(sqrt(5)xxsqrt(5)xxsqrt(5)xxsqrt(5))= 25#

#5xx5=25#
#25=25#