How to calculate area between #y_1=x^2-3x+2# and #y_2=-x^2+x+2#?

I tried to solve the disequation #y_1>=y_2# and that means #x < 0# OR # x\ge2#, so I've calculated #int_0^2 y_1-y_2= -8/3#

2 Answers
Jan 18, 2018

13/3

Explanation:

First we must find where they intersect by equating them to each other:

#x^2-3x+2=-x^2+x+2#

#=>2x^2-4x=0#

#=>x^2-2x=0#

#=>x(x-2)=0#

#=>x = 2 or 0#

enter image source here

Now to find the area, first we must Add the blue and green areas, and subtract the red area

{Red line = #x^2-3x+2#}
{Blue line = #-x^2+x+2#}

Blue area:
#int_0^2(-x^2+x+2)dx#

#=-x^3/3+x^2/2+2x|# #0->2#

#=-(2)^3/3+(2)^2/2+2(2)#

#=-8/3+2+4=10/3#

Green Area:

To find exactly where #x^2-3x+2# intersects the X-Axis, we must solve for x in-
#x^2-3x+2=0#

#=>x=1 or 2#

To find the area-
#int_1^2(x^2-3x+2)dx#

#=x^3/3-3/2x^2+2x|# #1->2#

#=(2)^3/3-3/2(2)^2+2(2)-((1)^3/3-3/2(1)^2+2(1))#

#=8/3-12/3+4-1/3+3/2-2=11/6#

Red Area:

Simple integral-

#int_0^1(x^2-3x+2)dx#

#=x^3/3-3/2x^2+2x|# #0->1#

#=(1)^3/3-3/2(1)^2+2(1)#

#1/3-3/2+2=5/6#

Now the total area = Blue + Green - Red = #10/3+11/6-(5/6)=13/3#

Jan 18, 2018

#8/3# cubic units.

Your answer was correct except for the negative sign.

Explanation:

The easiest way to solve this is to first note from the graph, that if we translate both curves in the positive #y# direction by a given amount, we can eliminate the problem of the areas being both above and below the #x# axis. Translating vertically will not affect the points of intersection, nor the boundary values in relation to the x axis.

enter image source here

So if we translate by say 2 units we the have:

enter image source here

#y_1=x^2-3x+4# and #y_2=-x^2+x+4#

Intersection of #y_1 and y_2#

#x^2-3x+4=-x^2+x+4#

#2x^2-4x=0

#x(x-2)=0=>x=0 and x=2#

We can see from the graph that if we find:

#int_(0)^(2)(-x^2+x+4) dx#

And subtract:

#int_(0)^(2)(x^2-3x+4) dx# , this will be the required area.

i.e.

#int_(0)^(2)(-2x^2+4x) dx#

#int_(0)^(2)(-2x^2+4x) dx=[-2/3x^3+2x^2]_(0)^(2)#

#Area=[-2/3x^3+2x^2]^(2)-[-2/3x^3+2x^2]_(0)#

Plugging in bounds:

#Area=[-2/3(2)^3+2(2)^2]^(2)-[-2/3(0)^3+2(0)^2]_(0)#

#Area=[-2/3(2)^3+2(2)^2]=[-16/3+8]=8/3# cubic units.