How to calculate this? #int_0^(2pi)sin(mx)cos(nx)dx#; #m,n in ZZ#.

3 Answers
May 15, 2017

#0#

Explanation:

Using

#sin(a+b)+sin(a-b)=2sina cos b#

so

#1/2(sin(m+n)x+sin(m-n)x)=sinmx cos nx#

now

#int_0^(2pi)sinmx cos nx dx = 1/2int_0^(2pi)(sin(m+n)x+sin(m-n)x)dx =#

#=-[Cos((m - n) x)/(2 (m - n)) +Cos((m + n) x)/(2 (m + n))]_0^(2pi)=#

#=(sin^2(m-n)pi)/(m-n)+(sin^2(m+n)pi)/(m+n) = 0#

Note that

#lim_(xi->0)(sin^2 xi pi)/xi = 0#

NOTE:

#[-Cos(2(m + n) x)/(2 (m + n))]_0^(2pi) = -Cos((m + n) pi)^2/(2 (m + n)) + Sin((m + n)pi)^2/(2 (m + n))+1/(2(m+n)) =Sin((m + n) pi)^2/(m + n)#

May 15, 2017

#0#

Explanation:

#int_0^(2pi) f(x)dx = int_(-pi)^pi f(x+pi)dx#

but here #f(x+pi)=(-1)^(m+n)f(x)# and also

#f(x)=-f(-x)# is an odd function so

#int_0^(2pi) f(x)dx = (-1)^(n+m)int_(-pi)^pi f(x) dx = 0#

May 16, 2017

Explanation:

Substitute #t=x-pi# so #x = t-pi# and #dx = dt#.

The limits of integration become #-pi# and #pi# and the new integrand is an odd function.

#sin(mx) = sin(mt-mpi) = sin(mt)cos(mpi)# which is an odd function of #t#

#cos(nx) = cos(nt)cos(npi)# which is an even function of #t#.

#int_0^(2pi)sin(mx)cos(nx)dx = int_-pi^pi sin(mt)cos(mpi)cos(nt)cos(npi) dt#

The integrand on the right is odd, so the integral from #-a# to #a# is #0#.