How to derive power reducing formula for #int(sec^nx)dx# and #int (tan^nx)dx# for integration?
1 Answer
#I_n = int \ sec^nx \ dx => I_n = 1/(n-1)tanx \ sec^(n-2)x + (n-2)/(n-1)I_(n-2) #
# J_n = int \ tan^nx \ dx => J_n = tan^(n-1)x/(n-1) - J_(n-2) #
Explanation:
We seek reduction formula for
A)
# I_n = \ int \ sec^nx \ dx #
B)# J_n = \ int \ tan^nx \ dx #
Part (A):
If we assume that
# I_n = \ int \ sec^(n-2)x \ sec^2x \ dx #
We can then apply Integration By Parts. Let:
# { (u,=sec^(n-2)x, => (du)/dx,=(n-2)sec^(n-3)x \ secx \ tanx ), ((dv)/dx,=sec^2x , => v,=tanx ) :}#
Then plugging into the IBP formula:
# int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx #
We have:
# int \ (sec^(n-2)x)(sec^2x) \ dx = (sec^(n-2)x)(tanx) - int \ (tanx)((n-2)sec^(n-3)x \ secx \ tanx) \ dx #
# :. I_n = tanx \ sec^(n-2)x - (n-2) \ int \ tan^2x \ sec^(n-2)x \ dx #
Using
# I_n = tanx \ sec^(n-2)x - (n-2) \ int \ (sec^2x-1) \ sec^(n-2)x \ dx #
# \ \ \ = tanx \ sec^(n-2)x - (n-2) \ int \ sec^(n)x - sec^(n-2)x \ dx #
# :. I_n = tanx \ sec^(n-2)x - (n-2) (I_n-I_(n-2)) #
# :. I_n = tanx \ sec^(n-2)x - (n-2) I_n+(n-2)I_(n-2) #
# :. (n-1)I_n = tanx \ sec^(n-2)x + (n-2)I_(n-2) #
# :. I_n = 1/(n-1)tanx \ sec^(n-2)x + (n-2)/(n-1)I_(n-2) #
Part (B):
If we assume that
# J_n = int \ tan^(n-2)x \ tan^2x \ dx #
Using
# J_n = int \ tan^(n-2)x \ (sec^2x-1) \ dx #
# \ \ \ = int \ tan^(n-2)x sec^2x \ dx - int \ \ tan^(n-2)x \ dx #
# \ \ \ = int \ tan^(n-2)x sec^2x \ dx - J_(n-2) #
Now we can perform a substitution, Let:
# u=tanx => (du)/dx = sec^2x #
And substituting into the above result:
# J_n = int \ u^(n-2) \ du - J_(n-2) #
Which is trivial to integrate, so doing so give sus:
# J_n = u^(n-1)/(n-1) - J_(n-2) #
And restoring the substitution, we get:
# J_n = tan^(n-1)x/(n-1) - J_(n-2) #