How to determine convergence or divergence of sequence an=#ln(n^2)/n# ?

#ln(n^2)/n#

1 Answer
Apr 13, 2018

The sequence converges

Explanation:

To find whether the sequence #a_n=ln(n^2)/n=(2ln(n))/n# converges, we observe what #a_n# is as #n->oo#.

#\ \ \ \ \ \ lim_(n->oo)a_n#

#=lim_(n->oo)(2ln(n))/n#

Using l'Hôpital's rule,
#=lim_(n->oo)(2/n)/1#

#=lim_(n->oo)2/n#

#=0#

Since #lim_(n->oo)a_n# is a finite value, the sequence converges.