How to divide #1^2, 2^2, ..., 64^2# set into 4 subsets with equal sum and 16 numbers in each?
1 Answer
Here's one method...
Explanation:
Start with
#{ (1^2+8^2 = 65), (2^2+7^2 = 53), (3^2+6^2 = 45), (4^2+5^2 = 41) :}#
Do the same with the next group of
#{ (9^2+16^2 = 337), (10^2+15^2 = 325), (11^2+14^2 = 317), (12^2+13^2 = 313) :}#
Notice that the differences of the sums are
We can combine these two sets of sums to smooth out the differences in each group of two sums by transpositions to get:
#{ (1^2+8^2+10^2+15^2 = 390), (2^2+7^2+9^2+16^2 = 390), (3^2+6^2+12^2+13^2 = 358), (4^2+5^2+11^2+14^2 = 358) :}#
Use the same permutation with the next
#{ (17^2+24^2+26^2+31^2 = 2502), (18^2+23^2+25^2+32^2 = 2502), (19^2+22^2+28^2+29^2 = 2470), (20^2+21^2+27^2+30^2 = 2470) :}#
We can now add these four sums in reverse order to the previous ones to cancel out the difference
#{ (1^2+8^2+10^2+15^2+20^2+21^2+27^2+30^2 = 2860), (2^2+7^2+9^2+16^2+19^2+22^2+28^2+29^2 = 2860), (3^2+6^2+12^2+13^2+18^2+23^2+25^2+32^2 = 2860), (4^2+5^2+11^2+14^2+17^2+24^2+26^2+31^2 = 2860) :}#
Having arrived at a permutation that works for