How to divide #1^2, 2^2, ..., 81^2# set into 3 subsets with equal sum and 27 numbers in each?

1 Answer
Mar 24, 2018

See explanation...

Explanation:

Let's try a cyclic permutation on the first #9# squares:

#1^2+5^2+9^2 = 107#

#2^2+6^2+7^2 = 89#

#3^2+4^2+8^2 = 89#

Applying the same permutation to the next #9# squares we get:

#10^2+14^2+18^2 = 620#

#11^2+15^2+16^2 = 602#

#12^2+13^2+17^2 = 602#

Applying the same permutation to the next #9# square we get:

#19^2+23^2+27^2 = 1619#

#20^2+24^2+25^2 = 1601#

#21^2+22^2+26^2 = 1601#

Notice that in each of these groups of three sums, the first sum is #18# more than the second and third.

So we can combine these sums cyclically permuted to get:

#1^2+5^2+9^2+11^2+15^2+16^2+21^2+22^2+26^2 = 2310#

#2^2+6^2+7^2+12^2+13^2+17^2+19^2+23^2+27^2 = 2310#

#3^2+4^2+8^2+10^2+14^2+18^2+20^2+24^2+25^2 = 2310#

Apply the same permutation to the second and third groups of #27# squares to get a solution for #81# squares...

#color(white)(0)1^2+color(white)(0)5^2+color(white)(0)9^2+11^2+15^2+16^2+21^2+22^2+26^2+#
#28^2+32^2+36^2+38^2+42^2+43^2+48^2+49^2+53^2+#
#55^2+59^2+63^2+65^2+69^2+70^2+75^2+76^2+80^2 = 60147#

#color(white)(0)2^2+color(white)(0)6^2+color(white)(0)7^2+12^2+13^2+17^2+19^2+23^2+27^2+#
#29^2+33^2+34^2+39^2+40^2+44^2+46^2+50^2+54^2+#
#56^2+60^2+61^2+66^2+67^2+71^2+73^2+77^2+81^2 = 60147#

#color(white)(0)3^2+color(white)(0)4^2+color(white)(0)8^2+10^2+14^2+18^2+20^2+24^2+25^2+#
#30^2+31^2+35^2+37^2+41^2+45^2+47^2+51^2+52^2+#
#57^2+58^2+62^2+64^2+68^2+72^2+74^2+78^2+79^2 = 60147#