How to evaluate this equation?

enter image source here

2 Answers
Mar 22, 2018

#int_0^(pi/4) (sin2x)^2*cos2x*dx=1/6#

Explanation:

#int_0^(pi/4) (sin2x)^2*cos2x*dx#

=#1/2int_0^(pi/4) (sin2x)^2*2cos2x*dx#

=#1/2int_0^(pi/4) (sin2x)^2*d(sin2x)#

=#[1/6(sin2x)^3]_0^(pi/4)#

=#1/6*[(sin(pi/2))^3-(sin(0))^3]#

=#1/6*(1-0)#

=#1/6#

Mar 22, 2018

#d/dxsin^3(2x)=3sin^2(2x)*d/dxsin(2x)=6sin^2(2x)cos(2x)#, #int_0^(pi/4)sin^2(2x)cos(2x)dx=1/6#

Explanation:

Let's first differentiate #sin^3(2x):#

#d/dxsin^3(2x)=3sin^2(2x)*d/dxsin(2x)=6sin^2(2x)cos(2x)#

By multiple applications of the Chain Rule.

So, we saw that differentiating sine to some power gave us a derivative involving both sine and cosine. This implies that we can evaluate the given integral, which involves both sine and cosine, using #u#-substitution and picking #u# as sine raised to a power.

Well, our integral involves #sin^2(2x),# so we can say:

#u=sin^2(2x)#
Let's calculate our new bounds with #u:#

Upper:
#u=sin^2(pi/2)=1#

Lower:
#u=sin^2(2*0)=0#

#(du)/dx=2sin(2x)*d/dxsin(2x)#

#(du)/dx=4sin(2x)cos(2x)#

#du=4sin(2x)cos(2x)dx#
#(du)/4=sin(2x)cos(2x)dx#

At first, it may not look like #(du)/4# shows up in the integral, but let's rewrite a bit:

#int_0^(pi/4)sin^2(2x)cos(2x)dx=int_0^(pi/4)sin(2x)sin(2x)cos(2x)dx#

So, #(du)/4=sin(2x)cos(2x)dx# does in fact show up in the integral.

Now, even with this substitution, we still have an instance of #sin(2x)# in the integral, but this is no problem after putting in #(du)/4#. Since #u=sin^2(2x), sqrt(u)=sin(2x)#.

Thus, our integral becomes

#1/4int_0^1sqrt(u)du=1/4(2/3(1^(3/2)))=1/4(2/3)=1/6#