Here is a Second Solution to the Problem :
Note that :
#y=xsqrt(1-x^2)-arc cosx" is defined" iff |x| lt 1#.
Now, #|x|lt1rArr EE" a unique "theta in (0,pi), s.t., x=costheta#.
#x=costheta, theta in (0,pi) hArr arc cosx =theta, |x| lt 1#.
#:. y=xsqrt(1-x^2)-arc cosx#,
#rArr y=costheta*sqrt(1-cos^2theta)-theta#,
#=costhetasintheta-theta#.
#rArr y=1/2*sin2theta-theta, where, theta=arc cosx#.
Thus, #y# is a function of #theta#, and #theta" of "x#.
By the B then, we have,
#dy/dx=dy/(d theta)*(d theta)/dx#,
#=d/(d theta){1/2*sin2theta-theta}*d/dx{arc cosx}#,
#={1/2(cos2theta)d/(d theta)(2theta)-1}*{-1/sqrt(1-x^2)}#,
#=-{1/2(cos2theta)(2)-1}{1/sqrt(1-x^2)}#,
#(1-cos2theta)/sqrt(1-x^2)#,
#=(2sin^2theta)/sqrt(1-x^2)#,
#={2(1-cos^2theta)}/sqrt(1-x^2)#,
#={2(1-x^2)}/sqrt(1-x^2)#.
#rArr dy/dx=2sqrt(1-x^2)#, as in the First Solution!
Feel, & Spread the Joy of Maths.!