How to find solutions of the equation in Cartesian form?

enter image source here
Can someone please explain to me how to do question 6? Thanks!

1 Answer

#z=1/sqrt2+i/sqrt2#
#z=-1/sqrt2-i/sqrt2#
#z=1/sqrt2+i/sqrt2#
#z=-1/sqrt2-i/sqrt2#

Explanation:

Given:

#z^2-i=0#

#z=x+iy#

#z^2=(x+iy)^2#

#z^2=x^2+2ixy+(iy)^2#

#i^2=-1#

#z^2=(x^2-y^2)+2ixy#
substituting for z^2

#(x^2-y^2)+2ixy-i=0#

#(x^2-y^2)+(2xy-1)i=0+0i#

Equating the real and imaginary parts

#x^2-y^2=0#

#2xy-1=0#

#2xy=1#

#y=1/(2x)#

#x^2-(1/(2x))^2=0#

#x^2-1/(4x^2)=0#

Let
#t=x^2#

#t-1/(4t)=0#

#4t^2-1=0#

#4t^2=1#

#t^2=1/4#

#t=+-1/2#

#t=1/2#

#t=-1/2#

ie

#x^2=1/2#
#x=+-1/sqrt2#

#x=1/sqrt2#

#x=-1/sqrt2#

#x^2=-1/2#

#x=+-i/sqrt2#

#x=i/sqrt2#

#x=-i/sqrt2#

Thus,

Substituting for x,

#x=1/sqrt2 , #
#y=1/(2x)=1/(2xx1/sqrt2)#

#y=1/sqrt2#

#x=-1/sqrt2 , #
#y=1/(2x)=1/(2xx-1/sqrt2)#

#y=-1/sqrt2#

#x=i/sqrt2 , #
#y=1/(2x)=1/(2xxi/sqrt2)#

#y=-i/sqrt2#

#x=-i/sqrt2 , #
#y=1/(2x)=1/(2xx-i/sqrt2)#

#y=i/sqrt2#

We have

#(1/sqrt2,1/sqrt2)#
#(-1/sqrt2,-1/sqrt2)#
#(i/sqrt2,-i/sqrt2)#
#(-i/sqrt2,i/sqrt2)#
as solutions

#z=1/sqrt2+1/sqrt2i#
#z=-1/sqrt2+-1/sqrt2i#
#z=i/sqrt2+1/sqrt2#
#z=-i/sqrt2-1/sqrt2#

Rearranging

#z=1/sqrt2+i/sqrt2#
#z=-1/sqrt2-i/sqrt2#
#z=1/sqrt2+i/sqrt2#
#z=-1/sqrt2-i/sqrt2#