How to find the values of: a) cos (A-B) b) tan (A+B) while angle is obtuse with sin A = 3/5 and angle B is acute with sin B = 12/13 ?

1 Answer
Jul 27, 2018

Below

Explanation:

If angle A is obtuse, then using a right-angled triangle,

#sin A=3/5#
#cos A=-4/5# (cos is negative in the second quadrant)
#tan A=-3/4# (tan is negative in the second quadrant)

If angle B is acute, then using a right-angled triangle,

#sin B=12/13#
#cos B=5/13#
#tan B=12/5#

a)
#cos(A-B)=cosAcosB+sinAsinB#
#=(-4/5)(5/13)+(3/5)(12/13)#
#=-4/13+36/65#
#=16/65#

b)
#tan(A+B)=(tanA+tanB)/(1-tanAtanB)#
#=(-3/4+12/5)/(1-(-3/4)(12/5))#
#=(33/20)/(1+9/5)#
#=33/20times5/14#
#=33/56#