How to integrate ((e^x)-e^(-x)) between 1 and 0?

int_0^1(e^x-e^-x)dx

1 Answer
Apr 21, 2018

I=(e-1)^2/e

Explanation:

Here,

I=int_0^1(e^x-e^-x)dx

=[e^x]_0^1-[-e^-x]_0^1

=[e^1-e^0]+[e^-1-e^0]

=e-1+e^-1-1

=e+1/e-2

=(e^2+1-2e)/e

=(e^2-2e+1)/e

=(e-1)^2/e