How to integrate #intx^2e^(-5x)dx# by using integration by parts?

#intx^2e^(-5x)dx#

1 Answer
Apr 30, 2018

#I=-e^(-5x)[x^2/5+(2x)/25+2/125]+c#

Explanation:

Here,

#I=intx^2e^(-5x)dx#

#"Using "color(blue) "Integration by Parts":#

#int(u*v)dx=uintvdx-int(u'intvdx)dx#

Let, #u=x^2 and v=e^(-5x)#

#=>u'=2x and intvdx=(e^(-5x))/(_5)#

#I=x^2(e^(-5x)/(-5))-int2x(e^(-5x)/(-5))dx#

#=-x^2/5e^(-5x)+2/5intxe^(-5x)dx#

Again,#"Using "color(blue) "Integration by Parts":#in second
integral

#=-x^2/5e^(-5x)+2/5[x(e^(_5x)/(-5))-int(e^(-5x)/(-5))dx]#

#=-x^2/5e^(-5x)+2/5[-x/5e^(-5x)+1/5(e^(-5x)/(-5))]+c#

#=-x^2/5e^(-5x)-(2x)/25e^(-5x)-2/125e^(-5x)+c#

#I=-e^(-5x)[x^2/5+(2x)/25+2/125]+c#