You have been given
#8cos^4(x)=3+4cos(2x)+cos(4x)#
You have also been given the hint #cos^4(x)=(1/2[1+cos(2x)])^2#
Replacing the term #cos^4(x)# with the hint gives
#8(1/2[1+cos(2x)])^2=3+4cos(2x)+cos(4x)#
#8(1/2[1+cos(2x)])(1/2[1+cos(2x)])=3+4cos(2x)+cos(4x)#
#8(1/2+1/2cos(2x))(1/2+1/2cos(2x))=3+4cos(2x)+cos(4x)#
#8(1/4+1/2cos(2x)+1/4cos^2(2x))=3+4cos(2x)+cos(4x)#
Next, distribute the 8 through
#2+4cos(2x)+4cos^2(2x)=3+4cos(2x)+cos(4x)#
Next, subtract #4cos(2x)# from both sides
#2+4cos^2(2x)=3+cos(4x)#
The double angle formula for cosines is #cos(2a)=2cos^2(a)-1#. So on the right hand side, #cos(4x)=cos(2*2x)=4cos^2(2x)-1#. This gives us:
#2+4cos^2(2x)=3+4cos^2(2x)-1#
#2+4cos^2(2x)=2+4cos^2(2x)#